Under the Microscope:
Let’s Focus on Optical Microscopy

Host
Rebecca Stawovy
Metallurgist

Host
Dave Kovarik
Metallurgist
Failure Analysis Consultant

Moderator
Melissa Gorris
Sales and Marketing Manager
Additive Manufacturing Team Lead
What we’ll talk about today…

Optical Microscopy

- Brief History
- Typical Microscope Parts
- Features (Bright Field, Dark Field, DIC, Stitching)
- Prep Procedures
- Examples
About NSL Analytical

NSL provides independent laboratory testing services to a diverse array of customers within regulated end-markets, where testing speed, accuracy and consistency are mission critical to operations.

Our teams of chemists, engineers and metallurgists provide scientific expertise in materials testing with a focus on metals, alloys and technical ceramics that are utilized in critical end market applications.

<table>
<thead>
<tr>
<th>Spectroscopy</th>
<th>Thermal Analysis</th>
<th>Metallurgical / Failure Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatography</td>
<td>Consulting</td>
<td>Mechanical Testing</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
<td>Particle Sizing & Characterization</td>
<td>Microscopy</td>
</tr>
</tbody>
</table>
The Microscope
Optical Microscopy

Observations made optically

- Grain size
- Grain orientation
- Cleanliness (Inclusions)
- Surface conditions – e.g., alpha case, (de)carburization
- Porosity/dendrites in castings
- If looking at a failure, may get data on cause of cracking

Optical Microscopy

Optics are dependent on wavelength

- Life-science microscopes depend on transmitted light, where metallurgical microscopes depend on reflected light.
- Theoretical minimum that can be seen is 500nm (at least the length of a wavelength of green light).
- Typical maximum magnification is 1000-1250x.

Wavelength image, courtesy of NASA
Optical Microscopy

Brief history

- Dubious claim - Hans and Zacharius Jensen (1595), two lens compound microscope
- 1st recorded obs. (1619) - Dutch Ambassador Boreel sees one in London in the possession of Dutch inventor Cornelius Drebbel - an instrument about eighteen inches long, two inches in diameter, and supported on 3 brass dolphins
- 1st published account of observations (1625- Stelluti and Cesi)
- Robert Hooke, Micrographia, 1665 (fleas and cork)
- Sorby develops metallurgical microscope to observe meteorites (1863)

From Wikipedia, “History of the Microscope”; Biological Microscope, courtesy University of Cambridge
F.G. 2.
Independent Focussing Device applied to Metallurgical Microscope as used for Photography.
Microscope
Microscope

Optical system of Metallurgical Microscope

- Camera
- Eyepiece lens
- Tube
- Prism/mirror
Microscope

Viewing options

- Light – dark field, light field, DIC, fluorescence
- Visual or camera
- Motorized turret objectives (2.5x to 100x)
- Stage x, y, z motorized (joystick or other)
- Touch screen on front, software controlled, controls in software
Why Optical Microscopy?

Some of the basic foundations of materials science

- The mechanical properties are governed by the structure on a microscopic scale.
- The ability to change the structure predictably allows the engineer to reasonably surmise (in an ideal world) the mechanical properties of the material when processed in a prescribed manner.
- Most materials are not ideal.
Sample Prep and Viewing Unetched Samples
Sample Preparation

Preparation for observation:

- Sectioning
- Mounting
- Polishing
- Observation (unetched)
- Etching (acid, bases, tint to bring out structure)
- Observation (etched)

Mounting Press

Automatic Polisher
Unetched Steel

MnS inclusions in 1214 steel

Al₂O₃ inclusions

Stitching

Oxide on steel surface
Cast Irons

Cast Irons

Type A Type C Type D Nodular (ductile)

Porosity

Pressed and sintered Fe-0.8%C alloy

Mo-1W

Etched Samples
– Non-ferrous
SAFETY FIRST!
Etches are usually made from hazardous chemicals – strong acids, bases, explosive when dry, cyanide

- Steel (Nitric or Picric acids)
- Stainless steel (Oxalic, electrolytic)
- Aluminum (Hydrofluoric, HCl, Nitric)
- Copper (Ammonium hydroxide and H2O2)
- Molybdenum (Potassium ferricyanide and NaOH)
Copper

Cast C11000 copper (0.04% O)

C10200, “oxygen-free” (0.001% O max), cold-worked and annealed

Copper

Using different light techniques

Bright field

Dark field

Cu-12Al bronze, “martensitic” structure

DIC

From: ASM Handbook, Volume 9: Metallography and Microstructures,
G.F. Vander Voort, editor, p332–354
Brass and Titanium

70-30 cartridge brass, hot rolled and annealed

Ti-4.5-3-2-2 with alpha case

Titanium – DIC light

Bright field
DIC

Basketweave pattern, Ti-6-4 alloy

From ASM Handbook, Volume 9: Metallography and Microstructures, G.F. Vander Voort, editor, p775–78
Aluminum Castings

A356

Metallic Mold

A390

Sand Mold

Unknown

Aluminum second-phase ID

A413 –
Si-grey
Al2FeNi – light grey
Mg2Si – black script

A390 –
Si-grey
Al2FeNi – light grey
Mg2Si – black script
Al7Cu4Ni - brown

Etchant – 25% nitric

Refractory Metals

Tungsten

Nitric, HF, Sulfuric - plate
DIC lighting

Molybdenum

Murikami's reagent, wire

Metallic Powder

Water atomized iron powder (SEM image)

Water atomized tool steel powder
Etchant – nitric/picric

Metallic Powder

Gas atomized stainless steel powder (SEM image)

Stainless steel powder at various stages of sintering:
- As-compacted (upper left)
- Sintered (lower right)

Additive Manufacturing

Nickel-chrome alloy powder, SEM image

Nickel-chrome alloy, after laser-powder-bed-fusion (LPBF), showing microcracks

Nickel-chrome alloy with adjusted chemistry, after laser-powder-bed-fusion (LPBF), showing no microcracks

Courtesy NSL/Praxair
Etched Samples
– Ferrous
Steel

Low carbon steel (1008)
Marshall's reagent

Low carbon steel (1008),
50% reduction
Marshall's reagent

Steel

Low carbon steel with Galvalume coating
1% nital

Medium carbon steel (1040), annealed
4% picral

Medium carbon steel (1040), spherodize annealed
4% picral

Pack carburized 1015 steel at 1725 F
Top photo, 1 hr
Bottom photo, 4 hr.
4% picral

Decarburized 4118H steel
4% nital

Stainless Steel

Al-6XN
HCl-Nitric-Acetic
Bright Field

Al-6XN
HCl-Nitric-Acetic
DIC

Stainless Steel

Cast 303, unetched

2205 duplex
20% NaOH

Welds

Welded 22-4 stainless
20% NaOH

A710 steel plate, SAW
15% nitric

Cast Irons

Ductile iron
Unetched

Ductile iron
2% nital

Cast Iron – Polarized Light

- Ductile iron graphite nodule, brightfield
- Ductile iron graphite nodule, polarized
- Grey iron flake, polarized

Microscopy in Failures
Intergranular attack at the surface of a nickel alloy steam generator tube from deposits on the surface.
Failure Analysis

Sensitization, 304 stainless, in MgCl₂
Mixed acids etch

Stress corrosion cracking, 304 stainless, in MgCl₂
Mixed acids etch

Rolling contact fatigue, bearing steel
Unetched

Forging lap in steel ski lift component
Unetched

W.T. Becker, R.J. Shipley, editors, p3-23, 941-956
Summary

- History of optical microscopy
- Parts of a microscope
- Typical observations
- What some metals look like unetched
- What some metals look like etched
Let's Talk Tech!

Rebecca Stawovy
Metallurgist
rstawovy@nslanalytical.com
216-438-5235

Dave Kovarik
Metallurgist
Failure Analysis Consultant
dkovarik@nslanalytical.com
216-438-5242

Join Us For Our Next Tech Talk!

Practical Approaches to California Proposition 65 Testing
January 14, 2021 at 2:00PM EDT

Hosted By
Dave van der Wiel
Director of Technology Development

Sarah Baskerville
Analytical Chemist